

Effect of Fertilization on Growth of Hybrid Aspen (Populus tremuloides x Populus tremula) Seedlings Over First Season – Preliminary Results

Dagnija Lazdiņa, Arta Bārdule, Andis Bārdulis Latvian State Forest Research institute "Silava"

Introduction - problems

- Interest about agroforestry and short rotation woody crops as source of raw material for green energy production is growing.
- Management of waste product utilization is looking for a cheep and environmentally friendly methods for waste utilization.
- Recycling of plant nutrient to use stabilized and pretreated waste products for fertilization of short rotation crops could be one of solutions.

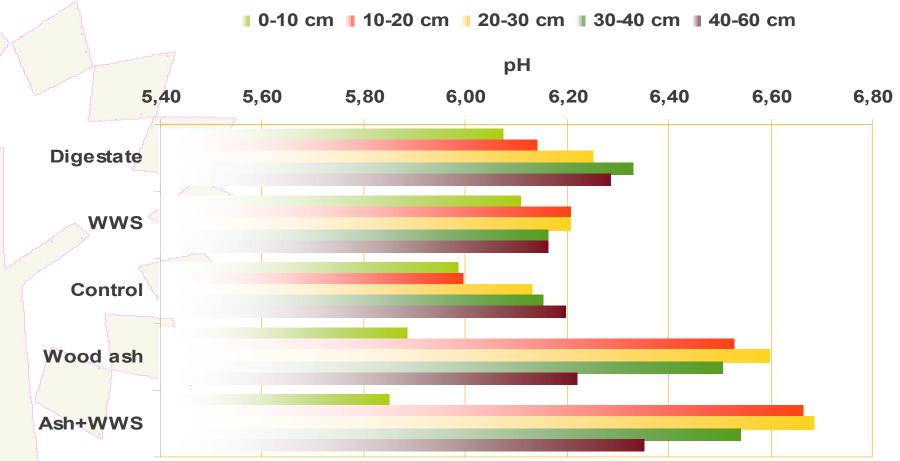
Field trial

Aim of study is to evaluate effect of plant nutrient containing fertilizers – waste water sludge, wood ash and digestate on hybrid aspen growth – increment.

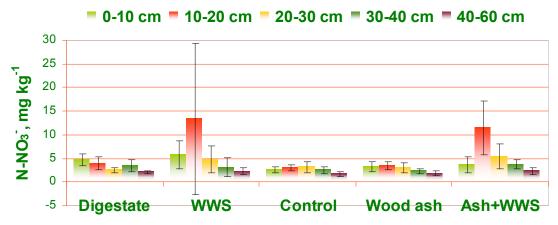
- ✓ Hybrid aspen clone 4 had been planted on loamy soil with fertilization in pit (depth 10-30 cm) doses equivalent to:
 - √ 10 t_{DM} ha⁻¹of waste water sludge,
 - ✓ 3 t_{DM} ha⁻¹ of wood ash,
 - mix of waste water sludge 5 t_{DM} ha⁻¹ and 1,5 t_{DM} ha⁻¹ wood ash
 - √ digestate 25 t ha⁻¹.

Amount of nutrients turned in by fertilizers

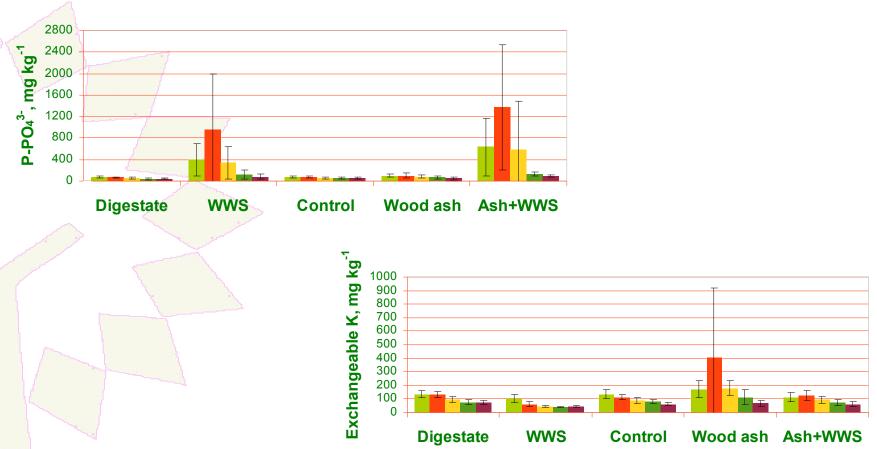
Fertilizer applied	N, kg ha ⁻¹	P, kg ha ⁻¹	K, kg ha-1
Wood ash	0.7	19.3	164.7
Waste water sludge	324.80	136.00	19.60
Wastewater sludge mix with wood ash	162.75	77.65	92.15
Digestate	9.75	19.00	70.00
Optimum	100-200	20-40	100-200



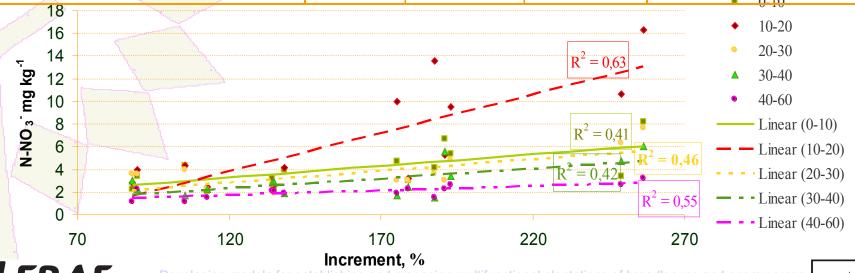
Liming effect of fertilizers


Developing models for establishing and managing multifunctional plantations of broadleaves and energy crop

Macronutrients - N tot; NO₃, spring

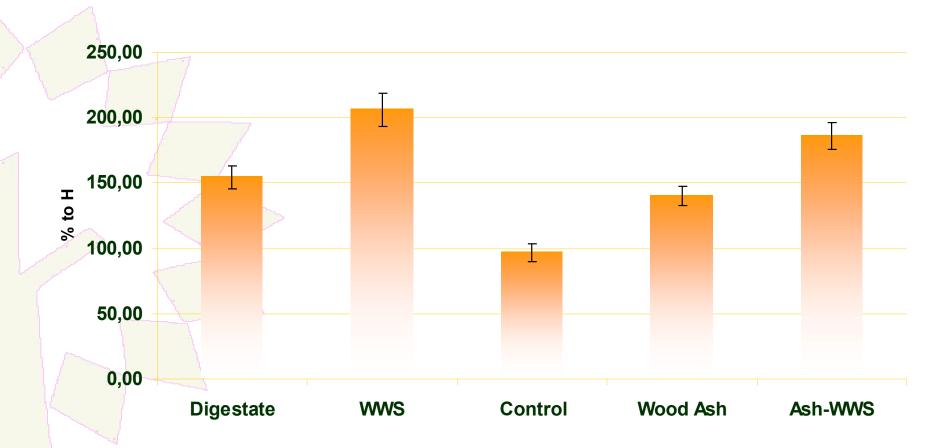


Macronutrients P and K


Developing models for establishing and managing multifunctional plantations of broadleaves and energy crop

Pearson correlations of soil chemical properties with plant annual increments

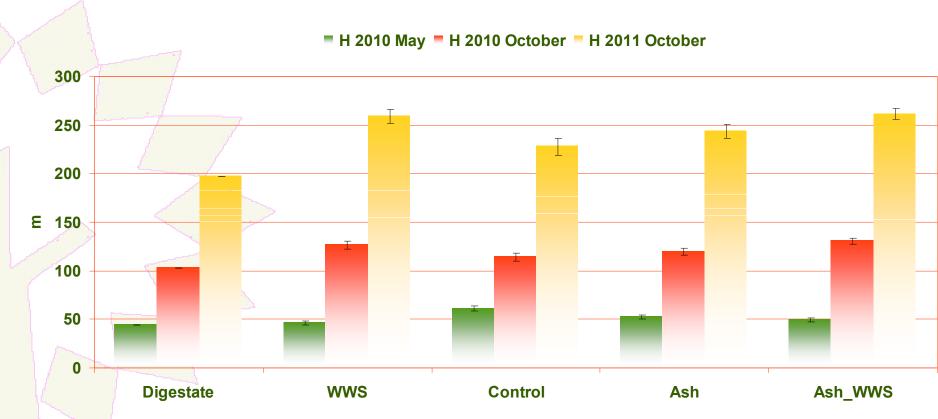
	Soil depth					
Chemical properties	0-10 cm	10-20 cm	20-30 cm	30-40 cm	40-60 cm	
Average - Ntot., g kg-1	0,73	0,45	0,51	0,14	0,19	
Average - N-NO ₃ , mg kg ⁻¹	0,64	0,80	0,68	0,65	0,74	
Average - P-PO ₄ 3-, mg kg-1	0,32	0,34	0,31	0,56	0,60	
Average – Exchangeable K mg kg ⁻¹	-0,37	-0,17	-0,26	-0,27	-0,28	
Average - pHCaCl ₂	0,00	0,21	0,08	- <mark>0</mark> ,04	-0,05	


ATTĪSTĪBAS FONDS

Developing models for establishing and managing multifunctional plantations of broadleaves and energy crops

Annual increments of plants 2010

Conclusions presented at paper


- Higher content of nitrogen leach-able salts nitrates as well phosphates stimulates growth of Hybrid aspen annual increment.
- ✓ Waste water sludge mix with wood ash could provide optimal macro-nutrients NPK concentration for SRC.
- Plants fertilized with waste water sludge containing fertilize at doses 10-5 t_{DM} ha⁻¹ significantly increases annul increment of hybrid aspen.

Some new results - growth

EIROPAS SAVIENĪBA

Summer 2011

Autumn 2011

