Woody biomass potential of abandoned agricultural lands

Andis Lazdiņš¹, Dagnija Lazdiņa¹

¹ Latvian State Forest Research Institute "Silava"

Project contributors:

Baltic Sea Region Programme 2007-2013

Duration:

February 2009 – December 2011

Partners:

34 partners from different European countries

Utilization of forest biomass for energy production in Latvia:

- gross energy use in Latvia 190 PJ;
 - energy import,
 natural gas 30%,
 heavy fuel oil 2.4%,
 other oil products 27%,
 coal 1,7%,
 imported electricity 5.1%,
 other sources of energy 2.2%,
 local sources,
 wood 28% (0.6-0.7 mill.tdry yearly),
 hydro and wind 4.5%.
- Land balance (total area 6.5 mill.ha):

Figure 1: Land balance in Latvia

Naturally afforested arable lands:

- total area 353 th.ha, growing stock 3.6 mill.m³, basal area 789 th.m²;
- characteristic indicators;
 - high variability of species and density,
 - different size and form of separate fields.

Figure 2: Area and distribution of growing stock by specie

Materials and methods:

- motor-manual thinning;
 - stand characteristics (80% birch, 20% aspen and Salix sp. in undergrowth, density 18.3 th.ha, average H 5.4 m, DBH 2.8 cm, growing stock 29.4 t_{dry} ha⁻¹), motor-manual thinning and manual collecting of the
 - motor-manual thinning and manual collecting of the small trees at the strip-road sides, thinning to the density 3.4 th.ha, 20% of the stand area under strip-roads, forwarding, crushing and road transport using ordinary forest machinery,
- mechanized removal of vegetation;
 - stand characteristics natural willow bush, density 15 th.ha, average H 4.0 m, DBH 1.8 cm, growing stock 13.6 t_{drv} ha⁻¹,
 - mechanized harvesting using AHWI AM 600 crusher on the base of CLAAS Xerion tractor.

Results:

- motor-manual thinning;
 - cost of biofuel production 11.8 € LV m⁻³,
 - 64% of costs are harvesting and moving of trees,
 - production of biofuel didn't affect productivity of thinning, actual cost of thinning is 223 € ha⁻¹,
- mechanized removal of vegetation;
 - cost of biofuel production 13.7 € LV m⁻³,
 - size and density of trees doesn't affect productivity significantly at a speed 0.8 km h⁻¹,
 - actual cost of harvesting is 496 € ha⁻¹.

Figure 3: Prime costs of motor-manual thinning (left) and mechanized removal of woody vegetation

Conclusions:

- thinning of stands, especially in the birch dominant areas, would provide at least 3 mill.LV m³ of biofuel in short term and 25 mill.LVm³ in long term;
- grey alder may be used as a coppice crop with AHWI AM 600 or relevant harvesters for direct biofuel production, but knowledge about this kind of forest management is limited;
- complete removal of vegetation for biofuel production and reconstruction of the forest using AHWI AM 600 or relevant harvesters is competitive, if growing stock is at least 30 t_{dry} ha⁻¹, but still a lot of development should be done to improve the machine to harvest natural bushes.

Contact information:

Web page: www.silava.lv