Excursion of Finnish Society of Forest Science to Latvia 27 - 29 August 2025 ## Impacts of potential EU forest climate policies on the forest-based sector Risto Päivinen Tapio Ltd. Contents lists available at ScienceDirect #### Forest Policy and Economics journal homepage: www.elsevier.com/locate/forpol Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector A. Maarit I. Kallio^{a,*}, Birger Solberg^b, Liisa Käär^c, Risto Päivinen^c EU Forest reference levels: The compatible harvest volumes compiled and assessed in terms of forest sector market development Risto Päivinen, A. Maarit I. Kallio, Birger Solberg, Liisa Käär <u>Forest Policy and Economics Volume 140</u>, July 2022, 102748 EU policy on forest carbon sinks revisited (In review) Elias Garvik and A. Maarit I. Kallio (2025) ^a Department Bioeconomy and Environment, Natural Resources Institute Finland, Helsinki, Finland b Norwegian University of Life Sciences, As, Norway c Tapio Ltd, Helsinki, Finland # Method: The global partial equilibrium forest sector model EFI-GTM # After any changes in the market equilibrium the model finds a new equilibrium #### **EFI-GTM** contains the following characteristics: - The global forest sector divided in 57 regions (of which 31 are countries in Europe.) - Forest growth and harvest - 20 final forest industry products - 16 intermediate products - 5 log types + chips - wood use and production costs per unit produced - Trade costs - Profit maximizing producers and pre-determined economic growth for each region ### 2. Main assumptions Two main types of future scenarios are compared: **A:** Baseline scenario (labelled "Base"), defined and quantified as a most likely development of the global forest sector (regarding harvest, production and consumption of forest industry productions) **B: Policy influenced scenarios** (labelled "Limited"), specified as the the Base scenario **except** that constraints on maximum harvest is assumed for each country in the EU + Norway (EU+N) - Same future market demand in the <u>Base</u> and <u>Limited</u> scenarios. Determined by - economic growth - population growth - the need to substitute fossil-based raw materials with renewables. ## Constraining the harvest utilization of the forests decreases the growth potential of the EU+N forest sector Projected roundwood harvests in the EU+N (5-year intervals) in Base and Limited Alternativ 4 # Largest decline would take place in labor intensive branches of forestry and sawnwood production in EU+N Decline in the EU+N forest sector production due to achieving the assumed harvest limitation in 2030 in "Base" vs "LimitedAlt.4" (Leakage = % share of the decline in the EU+N production that is relocated to RoW) | | Roundwood | Paper | Pulp | Sawnwood and plywood | Mechanical board | |---------------|-------------|-------|------|----------------------|------------------| | | Mm^3 | Mt | Mt | Mm ³ | Mm ³ | | The
EU+N | -53.7 | -1.6 | -3 | -11.8 | -1.9 | | RoW | 42.2 | 1 | 2.4 | 9.9 | 1.7 | | The World | -11.5 | -0.6 | -0.6 | -1.9 | -0.2 | | Leakage-
% | 79 % | 64 % | 80 % | 84 % | 89 % | # The leakage % is rather stable - significant leakage takes place regardless of the chosen reference period. Leakage = % share of the decline in the EU+N production that is relocated to other regions outside EU+N. *Year 2030* | Alternative harvest references | Assumed maximum allowed harvest in EU+N (Mm3/year) | Round
wood
% | Paper and paperboar d % | Chemical pulp % | Sawnwood
and
plywood
% | Mechanical
boards
% | |---------------------------------|---|--------------------|-------------------------|-----------------|---------------------------------|---------------------------| | Alt.1 1990-
2009 | 443 | 76 | 46 | 57 | 81 | 84 | | 2000-2012 | 491 | 79 | 65 | 74 | 79 | 87 | | 2006-2015 | 506 | 78 | 67 | 72 | 79 | 87 | | 530/550
(growing
harvest) | 530 (in <i>2021-25)</i>
and 550 (in <i>2026-</i>
<i>30)</i> | 79 | 64 | 80 | 84 | 89 | | 530/550 Low
Base demand | " | 84 | 85 | 77 | 83 | 96 | ## Regional allocation of the leakage of roundwood harvests in 2030 in the harvest alternative "Limited Alt.4" ## **Environmental concerns related to harvest and production leakage** Risks compared to Europe: green: the same level yellow: higher, red: clearly higher | | FOREST
AREA
CHANGE | CARBON
STOCK
CHANGE | PROTECTED FOREST % | MANAGE-
MENT
PLAN % | CERTI
F
AREA % | ENV PERF.
PRO-
DUCTION | CORRUP
TION | |-------------|--------------------------|---------------------------|--------------------|---------------------------|----------------------|------------------------------|----------------| | EUROPE | | | | | | | | | RUSSIA | | | | | | No data | | | NORTH
AM | | | | | | | | | SOUTH
AM | | | | | | | | ### **Conclusions** ### If harvest constraints implemented: - Harvests, forest industry production and thereby also employment opportunities leak from the EU+N to RoW - Wood and wood-based product imports to the EU+N increase. - Decline in the EU+N forest industry production <u>increases</u> prices of forest products globally - higher priced wood-based products will be partly substituted by other materials such as concrete, metal and plastics causing increased GHG emission. ## Commission sets Forest Reference Levels in a delegated act 28/10/2020 The Commission has today adopted the **forest reference levels (FRLs) for each Member State** to apply between 2021 and 2025. FRLs are benchmarks to calculate the sum of greenhouse gas removals and emissions from existing forests in each Member State. CO₂ removal from existing forestland is the backbone of the EU land use sink. # Historical FAOSTAT roundwood production in 2000-2019 and **HARMONIZED** assessed roundwood production for compliance periods 2021-25 and 2026-30 (million m3/a, overbark). #### Harvest with and without reductions #### Conclusions • Harvests lower than the market-driven levels would cause substantial carbon leakage. -> Limiting harvesting in one global region is not effective climate change policy instrument For each 1 m^3 of reduced harvests in EU+UK+N, other regions were projected to increase their **harvests** by **0.64** m^3 . For **sawlogs**, the leakage rate was **0.84** m^3 . Thank you!