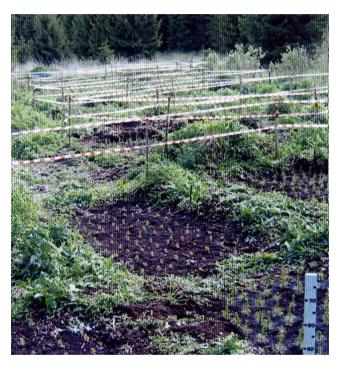


Ectomycorrhizal community in conifer stands on peat soils 12 years after wood ash treatment

Dārta Kļaviņa, LSFRI "Silava"

BioLink meeting,


Krakow, 2015

Experiments of forest fertilization with wood ash in Latvia

50 t ha⁻¹

5-20 t ha⁻¹

Researches established during EU project WOOD-EN-MAN in 2002-2004

Experiments of forest fertilization with wood ash in Latvia

Objective of study

To investigate effect of wood ash fertilization on fine root mycorrhizal community of conifers 12 years after wood ash application.

Material and methods Study site

- Experiment site -Vesetnieki, Forest research station, Jaunkalsnava
- Three mature conifer stands on deap peat soils

•Forest types:

Vacciniosa turf. mel. (A)

Myrtillosa turf. mel. (B)

Myrtillosa turf. mel. / Caricoso-phragmitosa (C)

Material and methods Experimental design

Control groundwater well

Material and methods Experimental design

Control 1

Control 2

Control 3

Control groundwater well

Material and methods Root sampling

In summer, 2014 root sample were collected using soil borer (D = 12 cm, sampling depth – 0-20 cm)
63 soil samples – 27 from fertilized areas and 36 from control plots.

Material and methods Root analysis

- Fine roots (>2mm in diameter) analysed
- Root sample was cut in 1cm fragments
- Number of ECM root tips per morphotype was assessed for 20 randomly choosed fragments

Photo: D. Kļaviņa

Material and methods Root analysis

- 1 to 6 root tips from each morphotype from every sample plot were taken for species identification using molecular methods
- Phire Plant Direct PCR Kit was used.
- PCR amplification was performed with primer ITS1F and ITS4.
- Sequencing was performed by Macrogen Europe Inc.
- Raw sequence data were analysed using BioEdit and SeqMan software from DNASTAR package.
- Databases at GenBank and UNITE were used to determine the identity of sequences.

Material and methods Background data

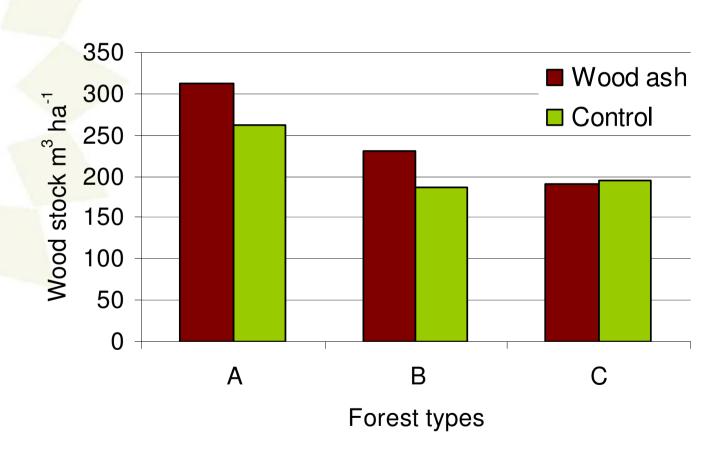
Soil analysis

Samples collected in summer 2014, sampled in control and fertilized sites (0-10cm, 10-20cm, 20-40cm, 40-80cm).

Tree growth rate

Soil analysis

Soil analysis



	Total		Vacciniosa turf. mel.		Myrtillosa turf. mel.		Myrtillosa turf. mel. / Caricoso- phragmitosa	
Parameters	Ash	Control	Ash	Control	Ash	Control	Ash	Control
pH (fresh samples in KCI)	7.1a	3.5b	7.6a*	3.3b	6.9a	3.1b	6.9a	4.0b
pH (sieved samples in H ₂ 0)	5.1 a	4.5 b	4.9a	4.3b	5.1a	4.3b	5.4a	4.8b
Relative moisture	10.2	10.4	9.8	9.9	9.7	9.1	11.6	11.6
N (Total, g/kg)	20.1 a	21.9 b	17.3	18.5	20.8	22.9	22.1	24.2
P (g/kg)	1.1 a	0.9 b	1.0	0.7	1.1	0.9	1.3a	1.0b
K (g/kg)	0.8	0.8	0.9	1.2	0.7	0.5	0.8	0.7
Ca (g/kg)	21.5 a	11.1 b	24.0 a	9.9b	19.6a	10.2b	20.8	12.9
Mg (g/kg)	1.4 a	1.0 b	1.4 a	1.0b	1.4a	0.8b	1.4	1.3

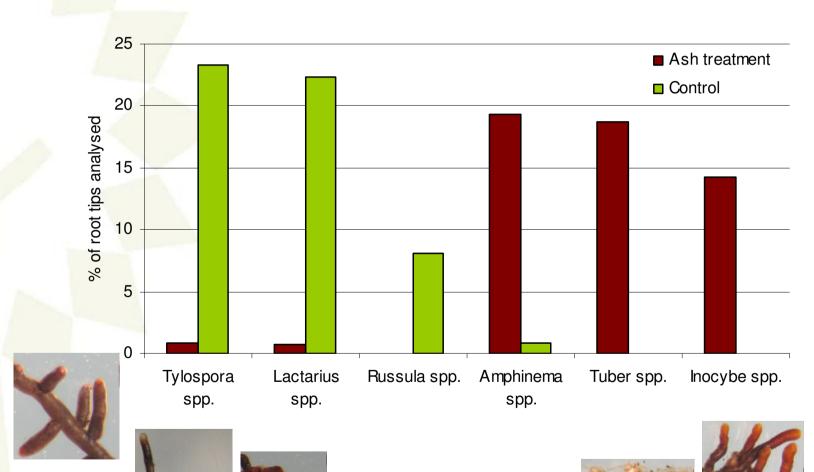
Different letter - significant differences (p<0.05)

Wood stock

Results Fine roots

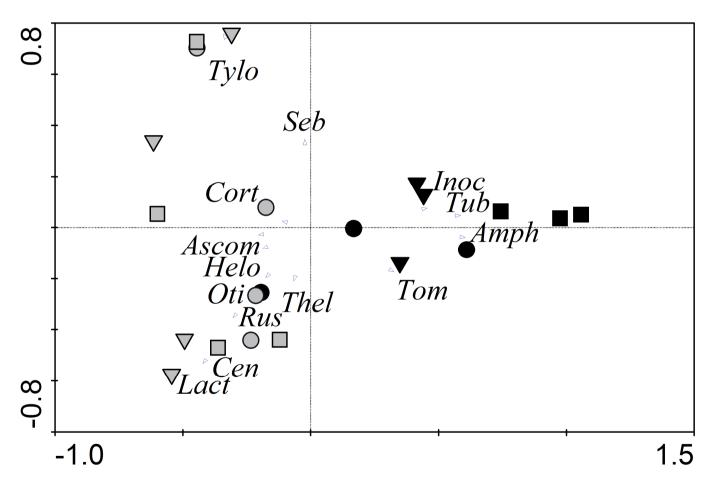
	Vacciniosa turf. mel.		Myrtillosa turf. mel.		Myrtillosa turf. mel. / Caricoso- phragmitosa	
Parameters	Ash	Control	Ash	Control	Ash	Control
Biomass (kg / ha)	1498±214	1089±146	899±140	661±86	1284±315	998±166
Frequency (%) of viable fine roots	41.6%a (4076)	55.3%b (4345)	54.6%a (3745)	41.7%b (4492)	50.9%a (3419)	58.6%b (4725)

Different letter - significant differences (p<0.05)


Results

	Ash	Control		
Root tips morphotyped (No of morphotypes)	5350 (15)	7043 (15)		
No of sequences	62	70		
No of species	34 (23 singletons)	33 (22 singletons)		
Shannon diversity index	2.2 (1.9 2.7 per plot)	1.7 (0.9 2.1 per plot)		
Dominant species	Amphinema byssoides (17.0%), Tuber cf. anniae (12.2%)	Tylospora asterophora (18.5%), Lactarius tabidus (20.3%)		

Results



Results

black – fertilized sample plots; grey – control sample plots circle - Vacciniosa turf. mel.;

square - Myrtillosa turf. mel.;

triangle - Myrtillosa turf. mel. / Caricoso-phragmitosa

Acknowledgements

- Colleagues from LSFRI "Silava" who establish these experiments and were involved in monitory there (T. Gaitnieks, A. Indriksons, P. Zālītis, A. Brūvelis, D. Lazdiņa, A. Lazdiņš and others)
- T. Pennanen, S. Velmala (FFRI "Metla")
- A. Menkis (SLU)
- ERDF project No. 2013/0065/2DP/2.1.1.1.0/13/APIA/VIAA/034
 "Koksnes pelnu apstrādes un izmantošanas meža mēslošanā tehniskā un metodiskā risinājuma izstrādāšana".

